Anomalies and Paradigms

Another useful piece for your scientific toolkit comes from neuroscientist V.S. Ramachandran, who frames the process of advances in science as a reconciliation between reigning paradigms and anomalies:

One can speak of reigning paradigms; what Kuhn calls normal science — What I cynically refer to as a “mutual admiration club trapped in a cul-de-sac of specialization”. The club usually has its Pope(s), hierarchical priesthood, acolytes and a set of guiding assumptions and accepted norms that are zealously guarded almost with religious fervor. (They also fund each other and review each other’s papers and grants and give each other awards.)

This isn’t entirely useless; it’s called “normal science” that grows by progressive accretion, employing the bricklayers rather than architects of science. If a new experimental observation (e.g. bacterial transformation; Ulcers cured by antibiotics) threatens to topple the edifice, its called an anomaly and the typical reaction of those who practice normal science is to ignore it or brush it under the carpet — a form of psychological denial surprisingly common among my colleagues.

This is not an unhealthy reaction since most anomalies turn out to be false alarms; the baseline probability of their survival as real anomalies is small and whole careers have been wasted pursuing them (think “polywater”, “cold fusion”.) Yet even such false anomalies serve the useful purpose of jolting scientists from their slumber by calling into question the basic axioms that drive their particular area of science. Conformist science feels cozy given the gregarious nature of humans and anomalies force periodic reality checks even if the anomaly turns out to be flawed.

More important, though, are genuine anomalies that emerge every now and then, legitimately challenging the status quo, forcing paradigm shifts and leading to scientific revolutions. Conversely, premature skepticism toward anomalies can lead to stagnation of science. One needs to be skeptical of anomalies but equally skeptical of the status quo if science is to progress.

I see an analogy between the process of science and of evolution by natural selection. For evolution, too, is characterized by periods of stasis (= normal science) punctuated by brief periods of accelerated change (= paradigm shifts) based on mutations (= anomalies) most of which are lethal (false theories) but some lead to the budding off of new species and phylogenetic trends (=paradigm shifts).

Since most anomalies are false alarms (spoon bending, telepathy, homeopathy) one can waste a lifetime pursuing them. So how does one decide which anomalies to invest in? Obviously one can do so by trial and error but that can be tedious and time consuming.

Let’s take four well-known examples: (1) Continental drift; (2) Bacterial transformation; (3) cold fusion; (4) telepathy. All of these were anomalies when first discovered because they didn’t fit the big picture of normal science at that time. The evidence that all the continents broke off and drifted away from a giant super-continent was staring at peoples faces — as Wagener noted in the early 20th century. (The coastlines coincided almost perfectly; certain fossils found on the east coast of Brazil were exactly the same as the ones on the west coast of Africa etc.) Yet it took fifty years for he idea to be accepted by the skeptics.

The second anomaly (2) — observed a decade before DNA and the genetic code — was that if you incubate one species of bacterium (pneumococcus A) with another species in a test tube (Pneumococcus B) then bacterium A becomes transformed into B! (Even the DNA —rich juice from B will suffice — leading Avery to suspect that heredity might have a chemical basis) Others replicated this. It was almost like saying put a pig and donkey into a room and two pigs emerge — yet the discovery was largely ignored for a dozen years. Until Watson and Crick pointed out the mechanism of transformation. The third anomaly — telepathy — is almost certainly a false alarm.

You will see a general rule of thumb emerging here. Anomalies (1) and (2) were not ignored because of lack of empirical evidence. Even a school child can see the fit between continental coastlines or similarity of fossils. It was ignored solely because it didn’t fit the big picture — the notion of terra firma or a solid, immovable earth — and there was no conceivable mechanism that would allow continents to drift (until plate tectonics was discovered). Likewise (2) was repeatedly confirmed but ignored because it challenged the fundamental doctrine of biology — the stability of species. But notice that the third (telepathy) was rejected for two reasons; first, it didn’t fit the big picture and second because it was hard to replicate.

This gives us the recipe we are looking for; focus on anomalies that have survived repeated attempts to disprove experimentally, but are ignored by the establishment solely because you can’t think of a mechanism. But don’t waste time ones that have not been empirically confirmed despite repeated attempts (or the effect becomes smaller with each attempt — a red flag!)



Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: